ENDURANCE: Physiological Demands & Limitations

Andrew M Jones PhD
University of Exeter
Physiological Determinants of Endurance Performance

Joyner and Coyle, 2008
Physiological Determinants of Endurance Performance

AVERAGE RACE PACE

Exercise Economy

Rate of Aerobic Energy Expenditure

- Anaerobic Contribution?
- VO₂ Kinetics
- VO₂ Max
- LT & LTP

V Congresso Internacional da Corrida
Lisboa - 6 e 7 de Dezembro
FIGURE 1—Energy system contribution in 10-s time intervals for the 200, 400, 800, and 1500 m. Data are mean values ± SD.
Maximal Oxygen Uptake

- The maximal rate at which ATP can be re-synthesised aerobically
- Strong correlations between VO$_2$ max and endurance performance in heterogeneous groups
- Elite runners tend to have high VO$_2$ max values (70-85 ml/kg/min in men, 60-75 ml/kg/min in women)
VO₂ Max and Performance

(From: Karlsson & Saltin, 1971)
How to Improve VO$_2$ Max?

The Fick Equation: $VO_2 = (HR \times SV) \times a-vO_2$ difference

VO_2 max limited by the maximal cardiac output

Therefore, training at near-maximal HR is considered to be an effective way to enhance VO_2 max

An example session is 5 x 3 min hard effort with 2-3 min recovery
Running Economy

- The oxygen cost of running at sub-maximal speeds (ml/kg/min or ml/kg/km)
- Significant inter-individual variability
- Influenced by anthropometric, physiological, biomechanical, and technical factors
- Generally better in longer distance specialists
Running Economy at 16 km/h
Running Economy and Performance

(From: Conley and Krahenbuhl, 1980)
Running Economy and Performance

(From: Conley and Krahenbuhl, 1980)
Running Velocity at VO$_2$ Max

- The interaction of VO$_2$ max and running economy
- Provides ‘functional expression’ of VO$_2$ max in units of km/h
- Helps explain difference in performance in athletes with similar VO$_2$ max
- Enables accurate prediction of race performance
Running Velocity at VO$_2$ Max

VO$_2$ (mL/kg/min)

Running Speed (km/h)
How to Improve Economy?

- Economy is related to anthropometrical, physiological and biomechanical factors
- Optimal training is unclear but economy is known to improve over many years
- It is possible that accumulating a high volume of endurance training over many years is necessary to ‘hone’ economy
- Consistent (high-volume?) training over many years seems to be key
- There is some evidence that altitude training and certain types of strength training might also benefit economy
Relative volumes of different training in experimental (E) and control (C) groups during 9-wk explosive-type strength and endurance training

Changes in running economy in explosive training and control conditions

Group–by–training interaction $p < 0.01$

$\dot{V}O_2$ (ml x kg$^{-1}$ x min$^{-1}$)

Weeks
Changes in 5 km performance in explosive training and control conditions

Group-by-training interaction p < 0.05
Blood lactate values are quite sensitive to improved endurance fitness.
Maximal Lactate Steady State
How to Improve LT and LTP?

- The blood [lactate] reflects the balance between muscle lactate production and lactate clearance
- A good volume of decent quality training is necessary to increase muscle mitochondrial density – which should reduce lactate production at any given exercise intensity
- Sustained ‘tempo’ exercise at and above the LTP might help to stimulate adaptation of the body’s ability to ‘clear’ lactate
- Regulating the intensity of continuous endurance exercise is very important in optimising the training effect
Training Zones

“Easy” “Steady” “Tempo” “Interval”

LT LTP

BLa (mmol/L) vs. Running Speed km/h

HR (b/min) vs. Running Speed km/h
VO$_2$ Kinetics

Phase I: "Cardiodynamic"
Phase II: Muscle VO$_2$ (?)
Phase III: Steady-State

Time (s)
The Time Constant (τ) and Error Signal for VO$_2$ Kinetics

$$y = BL + \text{Amp}(1 - e^{-t/\tau})$$

BL: Baseline

Amp: Amplitude

$Error$ $Signal$
ΔVO_2 (% final VO$_2$)

Time (min)

O$_2$ Deficit

$\tau=10\text{s}$

$\tau=45\text{s}$

$\tau=90\text{s}$
O₂ Deficit and Fatigue

O₂ Deficit = MRT x Amplitude

- A LARGER O₂ deficit means:
 - greater PCr breakdown
 - greater ADP and Pi accumulation
 - greater H⁺ and lactate accumulation
 - greater rate of glycogen degradation
Effects of interventions on \(\text{Vo}_2 \) kinetics and performance during high-intensity exercise
Training
Vo₂ kinetics are very fast in elite endurance athletes

Jones and Koppo (2005)
Acute endurance training enhances Vo_2 kinetics

Carter et al. (2000)
Low-intensity or high-intensity training?

Influence of continuous and interval training on oxygen uptake on-kinetics.
Berger NJ, Tolfrey K, Williams AG, Jones AM.

A continuous training group that completed three to four sessions per week of 30-min duration at 60% VO2peak (LO); an interval training group that completed three to four sessions per week involving 20 x 1-min exercise bouts at 90% VO2peak

Continuous and interval training were similarly effective in reducing the amplitude of the VO2 slow component
Repeated sprint training also effective in improving VO$_2$ kinetics

Moderate

- RST Post $\tau_p = 18$ s
- RST Pre $\tau_p = 30$ s

Severe

- RST Post $\tau_p = 17$ s
- RST Pre $\tau_p = 28$ s

- ET Post $\tau_p = 21$ s
- ET Pre $\tau_p = 23$ s

- ET Post $\tau_p = 35$ s
- ET Pre $\tau_p = 38$ s
Enhanced exercise tolerance correlated with improved VO_2 kinetics
Warm-Up/Priming
“Priming” Exercise

A

80% LT/80% LT

B

80% LT/50% Δ

C

50% Δ/80% LT

D

50% Δ/50% Δ

Gerbino et al. (1996)
Time course of the priming effect
Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O₂ uptake kinetics and severe-intensity exercise tolerance

Stephen J. Bailey, Anni Vanhatalo, Daryl P. Wilkerson, Fred J. DiMenna, and Andrew M. Jones
School of Sport and Health Sciences, St. Luke’s Campus, University of Exeter, Devon, United Kingdom
Submitted 24 July 2009; accepted in final form 27 September 2009
Interaction of prior exercise intensity and subsequent recovery duration

Figure 2
Optimal ‘warm-up’ enhances performance

Pre-exercise blood [lactate] of ~ 3 mM appears to be optimal

Prior *high-intensity* exercise coupled with *sufficient* recovery optimizes the balance between preserving the effects of prior exercise on VO₂ kinetics and providing sufficient time for muscle homeostasis to be restored.
“In elite middle-distance athletes, 800-m time-trial performance was significantly faster following HWU (HWU, 124.5 ± 8.3 vs. CON, 125.7 ± 8.7 s, P<0.05).”
Effects of interventions on \(\text{Vo}_2 \) kinetics and performance during high-intensity exercise

- EPO, APVE, Hyperoxia
- Training, Priming, Nitrate, Bicarbonate, Hyperoxia

![Graph showing changes in oxygen uptake over time with interventions marked at different stages.](image-url)
Obrigado pela vossa atenção!