

Physiological Determinants of Endurance Performance

Performance Velocity or Power

MORPHOLOGICAL COMPONENTS

Joyner and Coyle, 2008

Physiological Determinants of Endurance Performance

Physiology of Running

Maximal Oxygen Uptake

- The maximal rate at which ATP can be resynthesised aerobically
- Strong correlations between VO_{2} max and endurance performance in heterogeneous groups
- Elite runners tend to have high VO_{2} max values ($70-85 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$ in men, 60-75 $\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ in women)

V Congresso Internacional da Corrida Lisboa - 6 e 7 de Dezembro

VO_{2} Max and Performance

How to Improve $\mathrm{VO}_{2} \mathrm{Max}$?

The Fick Equation: $\mathrm{VO}_{2}=(\mathrm{HR} \times \mathrm{SV}) \times \mathrm{a}-\mathrm{vO}_{2}$ difference
VO_{2} max limited by the maximal cardiac output Therefore, training at near-maximal HR is considered to be an effective way to enhance VO_{2} max

An example session is $5 \times 3 \mathrm{~min}$ hard effort with 2-3 min recovery

V Congresso Internacional da Corrida Lisboa-6e7de Dezembro

Running Economy

- The oxygen cost of running at submaximal speeds ($\mathrm{ml} / \mathrm{kg} / \mathrm{min}$ or $\mathrm{ml} / \mathrm{kg} / \mathrm{km}$)
- Significant inter-individual variability
- Influenced by anthropometric, physiological, biomechanical, and technical factors
- Generally better in longer distance specialists

Running Economy at 16 km/h

Running Economy and Performance

(From: Conley and Krahenbuhl, 1980)

Running Economy and Performance

(From: Conley and Krahenbuhl, 1980)
V Congresso Internacional da Corrida Lisboa - 6 e 7 de Dezembro

Running Velocity at $\mathrm{VO}_{2} \mathrm{Max}$

- The interaction of VO_{2} max and running economy
- Provides 'functional expression' of VO_{2} max in units of km/h
- Helps explain difference in performance in athletes with similar VO_{2} max
- Enables accurate prediction of race performance

Running Velocity at $\mathrm{VO}_{2} \mathrm{Max}$

V Congresso Internacional da Corrida Lisboa - 6 e 7 de Dezembro

How to Improve Economy?

- Economy is related to anthropometrical, physiological and biomechanical factors
- Optimal training is unclear but economy is known to improve over many years
- It is possible that accumulating a high volume of endurance training over many years is necessary to 'hone' economy
- Consistent (high-volume?) training over many years seems to be key
- There is some evidence that altitude training and certain types of strength training might also benefit economy

Relative volumes of different training in experimental (E) and control (C) groups during 9-wk explosive-type strength and endurance training

Paavolainen, L. et al. J Appl Physiol 86: 1527-1533 1999
Federaçáo
Portuguesa

Changes in running economy in explosive training and control conditions

V Congresso Internacional da Corrida

Changes in 5 km performance in explosive training and control conditions

Blood Lactate and HR Response to Incremental Exercise

Blood lactate values are quite sensitive to improved endurance fitness
V Congresso Internacional da Corrida

Maximal Lactate Steady State

How to Improve LT and LTP?

- The blood [lactate] reflects the balance between muscle lactate production and lactate clearance
- A good volume of decent quality training is necessary to increase muscle mitochondrial density - which should reduce lactate production at any given exercise intensity
- Sustained 'tempo' exercise at and above the LTP might help to stimulate adaptation of the body's ability to clear' lactate
- Regulating the intensity of continuous endurance exercise is very important in optimising the training effect

V Congresso Internacional da Corrida Lisboa-6e7de Dezembro

Training Zones

VO_{2} Kinetics

V Congresso Internacional da Corrida

Time Constant

O_{2} Deficit

O_{2} Deficit and Fatigue

O_{2} Deficit = MRT x Amplitude

- A LARGER O_{2} deficit means:
- greater PCr breakdown
- greater ADP and Pi accumulation
- greater H+ and lactate accumulation
- greater rate of glycogen degradation

Effects of interventions on Vo_{2} kinetics and performance during high-intensity exercise

Vo_{2} kinetics are very fast in elite endurance athletes

Jones and Koppo (2005)

Time (s)
V Congresso Internacional da Corrida Lisboa - 6 e 7 de Dezembro

PROGRRMA NACIONRL DE TMARCHE E CORRIDA

Federaçáo
portuguesa
ATLETISMO

Acute endurance training enhances Vo_{2} kinetics

Low-intensity or high-intensity training?

> Med Sci Sports Exerc. 2006 Mar;38(3):504-12.
> Influence of continuous and interval training on oxygen uptake on-kinetics.

Berger NJ, Tolfrey K, Williams AG, Jones AM.

A continuous training group that completed three to four sessions per week of 30-min duration at 60\% VO2peak (LO); an interval training group that completed three to four sessions per week involving 20×1-min exercise bouts at 90\% VO2peak

Continuous and interval training were similarly effective in reducing the amplitude of the VO_{2} slow component

Repeated sprint training also effective in improving VO_{2} kinetics

Moderate

Severe

 Bailey et al. (2009)

Enhanced exercise tolerance correlated with improved VO_{2} kinetics

V Congresso Internacional da Corrida

Warm-Up/Priming

V Congresso Internacional da Corrida Lisboa-6e7de Dezembro

"Priming" Exercise

A

80\% LT/80\% LT
C

B

80% LT $/ 50 \% \Delta$
D

ATLETISMO

Time course of the priming effect

V Congresso Internacional da Corrida
Lisboa - 6e7de Dezembro

Federação
Portuguesa
Atletismo
Burnley et al., JAP, 2006

Optimizing the "priming" effect: influence of prior exercise intensity and recovery duration on O_{2} uptake kinetics and severe-intensity exercise tolerance

Stephen J. Bailey, Anni Vanhatalo, Daryl P. Wilkerson, Fred J. DiMenna, and Andrew M. Jones School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom

Submitted 24 July 2009; accepted in final form 27 September 2009

Interaction of prior exercise intensity and subsequent recovery duration

Optimal 'warm-up' enhances performance

Pre-exercise blood [lactate] of $\sim 3 \mathrm{mM}$ appears to be optimal
Prior high-intensity exercise coupled with sufficient recovery optimizes the balance between preserving the effects of prior exercise on VO_{2} kinetics and providing sufficient time for muscle homeostasis to be restored.

Prior high-intensity exercise improves 800m running performance

Total O_{2} consumed was 9%

Ingham et al., 2013, IJSPP
"In elite middle-distance athletes, 800-m time-trial performance was significantly faster following HWU (HWU, $124.5 \pm 8.3 \mathrm{vs}$. CON, $125.7 \pm 8.7 \mathrm{~s}, \mathrm{P}<0.05) .{ }^{\prime \prime}$

Effects of interventions on Vo_{2} kinetics and performance during high-intensity exercise

Obrigado pela vossa atenção!

